Tracing Policy

Reference for the TracingPolicy custom resource

TracingPolicy is a user-configurable Kubernetes custom resource (CR) that allows users to trace arbitrary events in the kernel and optionally define actions to take on a match, for enforcement for example. Currently, two types of events are supported: kprobes and tracepoints, but others may be added in the future (e.g., uprobes) by following a similar approach.

Note that TracingPolicy can be considered low-level since they require knowledge about the Linux kernel and containers to be written correctly. In the future, we are considering to add a high-level RuntimeSecurityPolicy which would take this complexity away.

For the complete custom resource definition (CRD) refer to the YAML file cilium.io_tracingpolicies.yaml. One practical way to explore the CRD is to use kubectl explain against a Kubernetes API server on which it is installed, for example kubectl explain tracingpolicy.spec.kprobes provides field-specific documentation and details on kprobe spec.

Getting started with Tracing Policy

To keep the Cilium Policy Definitions unified, the TracingPolicy follows the same CR logic and semantics that you might be familiar with from other Cilium concepts, like CiliumNetworkPolicy.

To discover TracingPolicy, let’s understand via an example that will be explained in this document:

apiVersion: cilium.io/v1alpha1
kind: TracingPolicy
metadata:
  name: "fd-install"
spec:
  kprobes:
  - call: "fd_install"
    syscall: false
    args:
    - index: 0
      type: "int"
    - index: 1
      type: "file"
    selectors:
    - matchArgs:
      - index: 1
        operator: "Equal"
        values:
        - "/etc/passwd"
        - "/etc/shadow"

Required fields

The first part follows a common pattern among all Cilium Policies or more widely Kubernetes object. It first declares the Kubernetes API used, then the kind of Kubernetes object it is in this API and an arbitrary name for the object, that has to comply with Kubernetes naming convention.

apiVersion: cilium.io/v1alpha1
kind: TracingPolicy
metadata:
  name: "fd-install"

Specification

The spec or specification can be composed of kprobes or tracepoints at the moment. It describes the arbitrary event in the kernel that will be traced.

Kprobes

Kprobes enables you to dynamically break into any kernel routine and collect debugging and performance information non-disruptively. kprobes are highly tight to your kernel version and might not be portable since the kernel symbols depend on your build.

Conveniently, you can list all kernel symbols reading the /proc/kallsyms file. For example to search for the write syscall kernel function, you can execute sudo grep sys_write /proc/kallsyms, the output should be similar to this, minus the architecture specific prefixes.

ffffdeb14ea712e0 T __arm64_sys_writev
ffffdeb14ea73010 T ksys_write
ffffdeb14ea73140 T __arm64_sys_write
ffffdeb14eb5a460 t proc_sys_write
ffffdeb15092a700 d _eil_addr___arm64_sys_writev
ffffdeb15092a740 d _eil_addr___arm64_sys_write

You can see that the exact name of the symbol for the write syscall on our kernel version is __arm64_sys_write. Note that on x86_64, the prefix should be __x64_ instead of __arm64_.

In our example, we will explore a kprobe hooking into the fd_install kernel function. The fd_install kernel function is called each time a file descriptor is installed into the file descriptor table of a process, typically referenced within system calls like open or openat. Hooking fd_install has its benefits and limitations, which are out of the scope of this document.

spec:
  kprobes:
  - call: "fd_install"
    syscall: false

As usual, kprobes calls can be defined independently in different policies, or together in the same Policy. For example, we can define trace multiple kprobes under the same tracing policy:

spec:
  kprobes:
  - call: "sys_read"
    syscall: true
    # [...]
  - call: "sys_write"
    syscall: true
    # [...]
Tracepoints

A tracepoint placed in the Linux kernel code provides a hook to call a function that you can provide at runtime using Tetragon. Tracepoints have the advantage of being stable across kernel versions and thus more portable than kprobes.

To see the list of tracepoints available on your kernel, you can list them using sudo ls /sys/kernel/debug/tracing/events, the output should be similar to this.

alarmtimer    ext4            iommu           page_pool     sock
avc           fib             ipi             pagemap       spi
block         fib6            irq             percpu        swiotlb
bpf_test_run  filelock        jbd2            power         sync_trace
bpf_trace     filemap         kmem            printk        syscalls
bridge        fs_dax          kvm             pwm           task
btrfs         ftrace          libata          qdisc         tcp
cfg80211      gpio            lock            ras           tegra_apb_dma
cgroup        hda             mctp            raw_syscalls  thermal
clk           hda_controller  mdio            rcu           thermal_power_allocator
cma           hda_intel       migrate         regmap        thermal_pressure
compaction    header_event    mmap            regulator     thp
cpuhp         header_page     mmap_lock       rpm           timer
cros_ec       huge_memory     mmc             rpmh          tlb
dev           hwmon           module          rseq          tls
devfreq       i2c             mptcp           rtc           udp
devlink       i2c_slave       napi            sched         vmscan
dma_fence     initcall        neigh           scmi          wbt
drm           interconnect    net             scsi          workqueue
emulation     io_uring        netlink         signal        writeback
enable        iocost          oom             skb           xdp
error_report  iomap           page_isolation  smbus         xhci-hcd

You can then choose the subsystem that you want to trace, and look the tracepoint you want to use and its format. For example, if we choose the netif_receive_skb tracepoints from the net subsystem, we can read its format with sudo cat /sys/kernel/debug/tracing/events/net/netif_receive_skb/format, the output should be similar to the following.

name: netif_receive_skb
ID: 1398
format:
        field:unsigned short common_type;       offset:0;       size:2; signed:0;
        field:unsigned char common_flags;       offset:2;       size:1; signed:0;
        field:unsigned char common_preempt_count;       offset:3;       size:1; signed:0;
        field:int common_pid;   offset:4;       size:4; signed:1;

        field:void * skbaddr;   offset:8;       size:8; signed:0;
        field:unsigned int len; offset:16;      size:4; signed:0;
        field:__data_loc char[] name;   offset:20;      size:4; signed:0;

print fmt: "dev=%s skbaddr=%px len=%u", __get_str(name), REC->skbaddr, REC->len

Similarly to kprobes, tracepoints can also hook into system calls. For more details, see the raw_syscalls and syscalls subysystems.

Arguments

A call contains an args field which a list of function arguments to include in the trace output. Indeed the BPF code that runs on the hook point requires information about the types of arguments of the function being traced to properly read, print and filter on its arguments. Currently, this information needs to be provided by the user under the args section. For the available types, see directly in the TracingPolicy CRD.

Following our example, here is the part that defines the arguments:

args:
- index: 0
  type: "int"
- index: 1
  type: "file"

To properly read and hook onto the fd_install(unsigned int fd, struct file *file) function, the YAML snippet above tells the BPF code that the first argument is an int and the second argument is a file, which is the struct file of the kernel. In this way, the BPF code and its printer can properly collect and print the arguments.

These types are sorted by the index field, where you can specify the order. The indexing starts with 0. So, index: 0 means, this is going to be the first argument of the function, index: 1 means this is going to be the second argument of the function, etc.

Note that for some args types, char_buf and char_iovec, there are additional fields named returnCopy and sizeArgIndex available:

  • returnCopy indicates that the corresponding argument should be read later (when the kretprobe for the symbol is triggered) because it might not be populated when the kprobe is triggered at the entrance of the function. For example, a buffer supplied to read(2) won’t have content until kretprobe is triggered.
  • sizeArgIndex indicates the (1-based, see warning below) index of the arguments that represents the size of the char_buf or iovec. For example, for write(2), the third argument, size_t count is the number of char element that we can read from the const void *buf pointer from the second argument. Similarly, if we would like to capture the __x64_sys_writev(long, iovec *, vlen) syscall, then iovec has a size of vlen, which is going to be the third argument.

These flags can be combined, see the example below.

- call: "sys_write"
  syscall: true
  args:
  - index: 0
    type: "int"
  - index: 1
    type: "char_buf"
    returnCopy: true
    sizeArgIndex: 3
  - index: 2
    type: "size_t"

Note that you can specify which arguments you would like to print from a specific syscall. For example if you don’t care about the file descriptor, which is the first int argument with index: 0 and just want the char_buf, what is written, then you can leave this section out and just define:

args:
- index: 1
  type: "char_buf"
  returnCopy: true
  sizeArgIndex: 3
- index: 2
  type: "size_t"

This tells the printer to skip printing the int arg because it’s not useful.

For char_buf type up to the 4096 bytes are stored. Data with bigger size are cut and returned as truncated bytes.

You can specify maxData flag for char_buf type to read maximum possible data (currently 327360 bytes), like:

args:
- index: 1
  type: "char_buf"
  maxData: true
  sizeArgIndex: 3
- index: 2
  type: "size_t"

This field is only used for char_buff data. When this value is false (default), the bpf program will fetch at most 4096 bytes. In later kernels (>=5.4) tetragon supports fetching up to 327360 bytes if this flag is turned on.

The maxData flag does not work with returnCopy flag at the moment, so it’s usable only for syscalls/functions that do not require return probe to read the data.

Selectors

A TracingPolicy can contain from 0 to 5 selectors. A selector is composed of 1 or more filters. The available filters are the following:

Arguments filter

Arguments filters can be specified under the matchArgs field and provide filtering based on the value of the function’s argument.

In the next example, a selector is defined with a matchArgs filter that tells the BPF code to process only the function call for which the second argument, index equal to 1, concerns the file under the path /etc/passwd or /etc/shadow. It’s using the operator Equal to match against the value of the argument.

Note that conveniently, we can match against a path directly when the argument is of type file.

selectors:
- matchArgs:
  - index: 1
    operator: "Equal"
    values:
    - "/etc/passwd"
    - "/etc/shadow"

The available operators for matchArgs are:

  • Equal
  • NotEqual
  • Prefix
  • Postfix
  • Mask

Further examples

In the previous example, we used the operator Equal, but we can also use the Prefix operator and match against all files under /etc with:

selectors:
- matchArgs:
  - index: 1
    operator: "Prefix"
    values:
    - "/etc"

In this situation, an event will be created every time a process tries to access a file under /etc.

Although it makes less sense, you can also match over the first argument, to only detect events that will use the file descriptor 4, which is usually the first that come afters stdin, stdout and stderr in process. And combine that with the previous example.

- matchArgs:
  - index: 0
    operator: "Equal"
    values:
    - "3"
  - index: 1
    operator: "Prefix"
    values:
    - "/etc"

Return args filter

Arguments filters can be specified under the returnMatchArgs field and provide filtering based on the value of the function return value. It allows you to filter on the return value, thus success, error or value returned by a kernel call.

matchReturnArgs:
- operator: "NotEqual"
  values:
  - 0

The available operators for matchReturnArgs are:

  • Equal
  • NotEqual
  • Prefix
  • Postfix

A use case for this would be to detect the failed access to certain files, like /etc/shadow. Doing cat /etc/shadow will use a openat syscall that will returns -1 for a failed attempt with an unprivileged user.

PIDs filter

PIDs filters can be specified under the matchPIDs field and provide filtering based on the value of host pid of the process. For example, the following matchPIDs filter tells the BPF code that observe only hooks for which the host PID is equal to either pid1 or pid2 or pid3:

- matchPIDs:
  - operator: "In"
    followforks: true
    values:
    - "pid1"
    - "pid2"
    - "pid3"

The available operators for matchPIDs are:

  • In
  • NotIn

Further examples

Another example can be to collect all processes not associated with a container’s init PID, which is equal to 1. In this way, we are able to detect if there was a kubectl exec performed inside a container because processes created by kubectl exec are not children of PID 1.

- matchPIDs:
  - operator: NotIn
    followforks: false
    isNamespacePID: true
    values:
    - 1

Binaries filter

Binary filters can be specified under the matchBinaries field and provide filtering based on the value of a certain binary name. For example, the following matchBinaries selector tells the BPF code to process only system calls and kernel functions that are coming from cat or tail.

- matchBinaries:
  - operator: "In"
    values:
    - "/usr/bin/cat"
    - "/usr/bin/tail"

Currently, only the In operator type is supported and the values field has to be a map of strings. The default behaviour is followForks: true, so all the child processes are followed. The current limitation is 4 values.

Further examples

One example can be to monitor all the sys_write system calls which are coming from the /usr/sbin/sshd binary and its child processes and writing to stdin/stdout/stderr.

This is how we can monitor what was written to the console by different users during different ssh sessions. The matchBinaries selector in this case is the following:

- matchBinaries:
  - operator: "In"
    values:
    - "/usr/sbin/sshd"

while the whole kprobe call is the following:

- call: "sys_write"
  syscall: true
  args:
  - index: 0
    type: "int"
  - index: 1
    type: "char_buf"
    sizeArgIndex: 3
  - index: 2
    type: "size_t"
  selectors:
  # match to /sbin/sshd
  - matchBinaries:
    - operator: "In"
      values:
      - "/usr/sbin/sshd"
  # match to stdin/stdout/stderr
    matchArgs:
    - index: 0
      operator: "Equal"
      values:
      - "1"
      - "2"
      - "3"

Namespaces filter

Namespaces filters can be specified under the matchNamespaces field and provide filtering of calls based on Linux namespace. You can specify the namespace inode or use the special host_ns keyword, see the example and description for more information.

An example syntax is:

- matchNamespaces:
  - namespace: Pid
    operator: In
    values:
    - "4026531836"
    - "4026531835"

This will match if: [Pid namespace is 4026531836] OR [Pid namespace is 4026531835]

  • namespace can be: Uts, Ipc, Mnt, Pid, PidForChildren, Net, Cgroup, or User. Time and TimeForChildren are also available in Linux >= 5.6.
  • operator can be In or NotIn
  • values can be raw numeric values (i.e. obtained from lsns) or "host_ns" which will automatically be translated to the appropriate value.

Limitations

  1. We can have up to 4 values. These can be both numeric and host_ns inside a single namespace.
  2. We can have up to 4 namespace values under matchNamespaces in Linux kernel < 5.3. In Linux >= 5.3 we can have up to 10 values (i.e. the maximum number of namespaces that modern kernels provide).

Further examples

We can have multiple namespace filters:

selectors:
- matchNamespaces:
  - namespace: Pid
    operator: In
    values:
    - "4026531836"
    - "4026531835"
  - namespace: Mnt
    operator: In
    values:
    - "4026531833"
    - "4026531834"

This will match if: ([Pid namespace is 4026531836] OR [Pid namespace is 4026531835]) AND ([Mnt namespace is 4026531833] OR [Mnt namespace is 4026531834])

Use cases examples

Generate a kprobe event if /etc/shadow was opened by /bin/cat which either had host Net or Mnt namespace access

apiVersion: cilium.io/v1alpha1
kind: TracingPolicy
metadata:
  name: "example_ns_1"
spec:
  kprobes:
    - call: "fd_install"
      syscall: false
      args:
        - index: 0
          type: int
        - index: 1
          type: "file"
      selectors:
        - matchBinaries:
          - operator: "In"
            values:
            - "/bin/cat"
          matchArgs:
          - index: 1
            operator: "Equal"
            values:
            - "/etc/shadow"
          matchNamespaces:
          - namespace: Mnt
            operator: In
            values:
            - "host_ns"
        - matchBinaries:
          - operator: "In"
            values:
            - "/bin/cat"
          matchArgs:
          - index: 1
            operator: "Equal"
            values:
            - "/etc/shadow"
          matchNamespaces:
          - namespace: Net
            operator: In
            values:
            - "host_ns"

This example has 2 selectors. Note that each selector starts with -.

Selector 1:

        - matchBinaries:
          - operator: "In"
            values:
            - "/bin/cat"
          matchArgs:
          - index: 1
            operator: "Equal"
            values:
            - "/etc/shadow"
          matchNamespaces:
          - namespace: Mnt
            operator: In
            values:
            - "host_ns"

Selector 2:

        - matchBinaries:
          - operator: "In"
            values:
            - "/bin/cat"
          matchArgs:
          - index: 1
            operator: "Equal"
            values:
            - "/etc/shadow"
          matchNamespaces:
          - namespace: Net
            operator: In
            values:
            - "host_ns"

We have [Selector1 OR Selector2]. Inside each selector we have filters. Both selectors have 3 filters (i.e. matchBinaries, matchArgs, and matchNamespaces) with different arguments. Adding a - in the beginning of a filter will result in a new selector.

So the previous CRD will match if:

[binary == /bin/cat AND arg1 == /etc/shadow AND MntNs == host] OR [binary == /bin/cat AND arg1 == /etc/shadow AND NetNs is host]

We can modify the previous example as follows:

Generate a kprobe event if /etc/shadow was opened by /bin/cat which has host Net and Mnt namespace access

apiVersion: cilium.io/v1alpha1
kind: TracingPolicy
metadata:
  name: "example_ns_2"
spec:
  kprobes:
    - call: "fd_install"
      syscall: false
      args:
        - index: 0
          type: int
        - index: 1
          type: "file"
      selectors:
        - matchBinaries:
          - operator: "In"
            values:
            - "/bin/cat"
          matchArgs:
          - index: 1
            operator: "Equal"
            values:
            - "/etc/shadow"
          matchNamespaces:
          - namespace: Mnt
            operator: In
            values:
            - "host_ns"
          - namespace: Net
            operator: In
            values:
            - "host_ns"

Here we have a single selector. This CRD will match if:

[binary == /bin/cat AND arg1 == /etc/shadow AND (MntNs == host AND NetNs == host) ]

Capabilities filter

Capabilities filters can be specified under the matchCapabilities field and provide filtering of calls based on Linux capabilities in the specific sets.

An example syntax is:

- matchCapabilities:
  - type: Effective
    operator: In
    values:
    - "CAP_CHOWN"
    - "CAP_NET_RAW"

This will match if: [Effective capabilities contain CAP_CHOWN] OR [Effective capabilities contain CAP_NET_RAW]

  • type can be: Effective, Inheritable, or Permitted.
  • operator can be In or NotIn
  • values can be any supported capability. A list of all supported capabilities can be found in /usr/include/linux/capability.h.

Limitations

  1. There is no limit in the number of capabilities listed under values.
  2. Only one type field can be specified under matchCapabilities.

Namespace changes filter

Namespace changes filter can be specified under the matchNamespaceChanges field and provide filtering based on calls that are changing Linux namespaces. This filter can be useful to track execution of code in a new namespace or even container escapes that change their namespaces.

For instance, if an unprivileged process creates a new user namespace, it gains full privileges within that namespace. This grants the process the ability to perform some privileged operations within the context of this new namespace that would otherwise only be available to privileged root user. As a result, such filter is useful to track namespace creation, which can be abused by untrusted processes.

To keep track of the changes, when a process_exec happens, the namespaces of the process are recorded and these are compared with the current namespaces on the event with a matchNamespaceChanges filter.

matchNamespaceChanges:
- operator: In
  values:
  - "Mnt"

The unshare command, or executing in the host namespace using nsenter can be used to test this feature. See a demonstration example of this feature.

Capability changes filter

Capability changes filter can be specified under the matchCapabilityChanges field and provide filtering based on calls that are changing Linux capabilities.

To keep track of the changes, when a process_exec happens, the capabilities of the process are recorded and these are compared with the current capabilities on the event with a matchCapabilityChanges filter.

matchCapabilityChanges:
- type: Effective
  operator: In
  isNamespaceCapability: false
  values:
  - "CAP_SETUID"

See a demonstration example of this feature.

Actions filter

Actions filters are a list of actions that execute when an appropriate selector matches. They are defined under matchActions and currently, the following action types are supported:

Sigkill action

Sigkill action terminates synchronously the process that made the call that matches the appropriate selectors from the kernel. In the example below, every sys_write system call with a PID not equal to 1 or 0 attempting to write to /etc/passwd will be terminated. Indeed when using kubectl exec, a new process is spawned in the container PID namespace and is not a child of PID 1.

- call: "sys_write"
  syscall: true
  args:
  - index: 0
    type: "fd"
  - index: 1
    type: "char_buf"
    sizeArgIndex: 3
  - index: 2
    type: "size_t"
  selectors:
  - matchPIDs:
    - operator: NotIn
      followForks: true
      isNamespacePID: true
      values:
      - 0
      - 1
    matchArgs:
    - index: 0
      operator: "Prefix"
      values:
      - "/etc/passwd"
    matchActions:
    - action: Sigkill
Signal action

Signal action sends specified signal to current process. The signal number is specified with argSig value.

Following example is equivalent to the Sigkill action example above. The difference is to use the signal action with SIGKILL(9) signal.

- call: "sys_write"
  syscall: true
  args:
  - index: 0
    type: "fd"
  - index: 1
    type: "char_buf"
    sizeArgIndex: 3
  - index: 2
    type: "size_t"
  selectors:
  - matchPIDs:
    - operator: NotIn
      followForks: true
      isNamespacePID: true
      values:
      - 0
      - 1
    matchArgs:
    - index: 0
      operator: "Prefix"
      values:
      - "/etc/passwd"
    matchActions:
    - action: Signal
      argSig: 9
Override action

Override action allows to modify the return value of call. While Sigkill will terminate the entire process responsible for making the call, Override will override the return value that was supposed to be returned with the value given in the argError field. It’s then up to the process handling of the return value of the function to stop or continue the execution.

For example, you can create a TracingPolicy that intercepts sys_symlinkat and will make it return -1 every time the first argument is equal to the string /etc/passwd:

kprobes:
- call: "sys_symlinkat"
  syscall: true
  args:
  - index: 0
    type: "string"
  - index: 1
    type: "int"
  - index: 2
    type: "string"
  selectors:
  - matchArgs:
    - index: 0
      operator: "Equal"
      values:
      - "/etc/passwd\0"
    matchActions:
    - action: Override
      argError: -1
FollowFD action

The FollowFD action allows to create a mapping using a BPF map between file descriptors numbers and filenames. It however needs to maintain a state correctly, see UnfollowFD and CopyFD related actions.

The fd_install kernel function is called each time a file descriptor must be installed into the file descriptor table of a process, typically referenced within system calls like open or openat. It is a good place for tracking file descriptor and filename matching.

Let’s take a look at the following example:

- call: "fd_install"
  syscall: false
  args:
  - index: 0
    type: int
  - index: 1
    type: "file"
  selectors:
  - matchPIDs:
      # [...]
    matchArgs:
      # [...]
    matchActions:
    - action: FollowFD
      argFd: 0
      argName: 1

This action uses the dedicated argFd and argName fields to get respectively the index of the file descriptor argument and the index of the name argument in the call.

UnfollowFD action

The UnfollowFD action takes a file descriptor from a system call and deletes the corresponding entry from the BPF map, where it was put under the FollowFD action.

Let’s take a look at the following example:

- call: "sys_close"
  syscall: true
  args:
  - index: 0
    type: "int"
  selectors:
  - matchPIDs:
    - operator: NotIn
      followForks: true
      isNamespacePID: true
      values:
      - 0
      - 1
    matchActions:
    - action: UnfollowFD
      argFd: 0

Similar to the FollowFD action, the index of the file descriptor is described under argFd:

matchActions:
- action: UnfollowFD
  argFd: 0

In this example, argFD is 0. So, the argument from the sys_close system call at index: 0 will be deleted from the BPF map whenever a sys_close is executed.

- index: 0
  type: "int"
CopyFD action

The CopyFD action is specific to duplication of file descriptor use cases. Similary to FollowFD, it takes an argFd and argName arguments. It can typically be used tracking the dup, dup2 or dup3 syscalls.

See the following example for illustration:

- call: "sys_dup2"
  syscall: true
  args:
  - index: 0
    type: "fd"
  - index: 1
    type: "int"
  selectors:
  - matchPIDs:
    # [...]
    matchActions:
    - action: CopyFD
      argFd: 0
      argName: 1
- call: "sys_dup3"
  syscall: true
  args:
  - index: 0
    type: "fd"
  - index: 1
    type: "int"
  - index: 2
    type: "int"
  selectors:
  - matchPIDs:
    # [...]
    matchActions:
    - action: CopyFD
      argFd: 0
      argName: 1
GetUrl action

The GetUrl action can be used to perform a remote interaction such as triggering Thinkst canaries or any system that can be triggered via an URL request. It uses the argUrl field to specify the URL to request using GET method.

matchActions:
- action: GetUrl
  argUrl: http://ebpf.io
DnsLookup action

The DnsLookup action can be used to perform a remote interaction such as triggering Thinkst canaries or any system that can be triggered via an DNS entry request. It uses the argFqdn field to specify the domain to lookup.

matchActions:
- action: DnsLookup
  argFqdn: ebpf.io
Post action

The Post action is intended to create an event but at the moment should be considered as deprecated as all TracingPolicy will generate an event by default.

NoPost action

The NoPost action can be used to suppress the event to be generated, but at the same time all its defined actions are performed.

It’s useful when you are not interested in the event itself, just in the action being performed.

Following example override openat syscall for “/etc/passwd” file but does not generate any event about that.

- call: "sys_openat"
  return: true
  syscall: true
  args:
  - index: 0
    type: int
  - index: 1
    type: "string"
  - index: 2
    type: "int"
  returnArg:
    type: "int"
  selectors:
  - matchPIDs:
    matchArgs:
    - index: 1
      operator: "Equal"
      values:
      - "/etc/passwd"
    matchActions:
    - action: Override
      argError: -2
    - action: NoPost

Selector Semantics

The selector semantics of the CiliumTracingPolicy follows the standard Kubernetes semantics and the principles that are used by Cilium to create a unified policy definition.

To explain deeper the structure and the logic behind it, let’s consider first the following example:

selectors:
 - matchPIDs:
   - operator: In
     followForks: true
     values:
     - pid1
     - pid2
     - pid3
  matchArgs:
  - index: 0
    operator: "Equal"
    values:
    - fdString1

In the YAML above matchPIDs and matchArgs are logically AND together giving the expression:

(pid in {pid1, pid2, pid3} AND arg0=fdstring1)

Multiple values

When multiple values are given, we apply the OR operation between them. In case of having multiple values under the matchPIDs selector, if any value matches with the given pid from pid1, pid2 or pid3 then we accept the event:

pid==pid1 OR pid==pid2 OR pid==pid3

As an example, we can filter for sys_read() syscalls that were not part of the container initialization and the main pod process and tried to read from the /etc/passwd file by using:

selectors:
 - matchPIDs:
   - operator: NotIn
     followForks: true
     values:
     - 0
     - 1
  matchArgs:
  - index: 0
    operator: "Equal"
    values:
    - "/etc/passwd"

Similarly, we can use multiple values under the matchArgs selector:

(pid in {pid1, pid2, pid3} AND arg0={fdstring1, fdstring2})

If any value matches with fdstring1 or fdstring2, specifically (string==fdstring1 OR string==fdstring2) then we accept the event.

For example, we can monitor sys_read() syscalls accessing both the /etc/passwd or the /etc/shadow files:

selectors:
 - matchPIDs:
   - operator: NotIn
     followForks: true
     values:
     - 0
     - 1
  matchArgs:
  - index: 0
    operator: "Equal"
    values:
    - "/etc/passwd"
    - "/etc/shadow"

Multiple operators

When multiple operators are supported under matchPIDs or matchArgs, they are logically AND together. In case if we have multiple operators under matchPIDs:

selectors:
  - matchPIDs:
    - operator: In
      followForks: true
      values:
      - pid1
    - operator: NotIn
      followForks: true
      values:
      - pid2

then we would build the following expression on the BPF side:

(pid == 0[following forks]) && (pid != 1[following forks])

In case of having multiple matchArgs:

selectors:
 - matchPIDs:
   - operator: In
     followForks: true
     values:
     - pid1
     - pid2
     - pid3
  matchArgs:
  - index: 0
    operator: "Equal"
    values:
    - 1
  - index: 2
    operator: "lt"
    values:
    - 500

Then we would build the following expression on the BPF side

(pid in {pid1, pid2, pid3} AND arg0=1 AND arg2 < 500)
Operator types

There are different types supported for each operator. In case of matchArgs:

  • Equal
  • NotEqual
  • Prefix
  • Postfix
  • Mask

The operator types Equal and NotEqual are used to test whether the certain argument of a system call is equal to the defined value in the CR.

For example, the following YAML snippet matches if the argument at index 0 is equal to /etc/passwd:

      matchArgs:
      - index: 0
        operator: "Equal"
        values:
        - "/etc/passwd"

Both Equal and NotEqual are set operations. This means if multiple values are specified, they are ORd together in case of Equal, and ANDd together in case of NotEqual.

For example, in case of Equal the following YAML snippet matches if the argument at index 0 is in the set of {arg0, arg1, arg2}.

matchArgs:
- index: 0
  operator: "Equal"
  values:
  - "arg0"
  - "arg1"
  - "arg2"

The above would be executed in the kernel as

arg == arg0 OR arg == arg1 OR arg == arg2

In case of NotEqual the following YAML snippet matches if the argument at index 0 is not in the set of {arg0, arg1}.

matchArgs:
- index: 0
  operator: "NotEqual"
  values:
  - "arg0"
  - "arg1"

The above would be executed in the kernel as

arg != arg0 AND arg != arg1

The operator type Mask performs and bitwise operation on the argument value and defined values. The argument type needs to be one of the value types.

For example in following YAML snippet we match second argument for bits 1 and 9 (0x200 value). We could use single value 0x201 as well.

matchArgs:
- index: 2
  operator: "Mask"
  values:
  - 1
  - 0x200

The above would be executed in the kernel as

arg & 1 OR arg & 0x200

The value can be specified as hexadecimal (with 0x prefix) octal (with 0 prefix) or decimal value (no prefix).

The type Prefix checks if the certain argument starts with the defined value, while the type Postfix compares if the argument matches to the defined value as trailing.

In case of matchPIDs:

  • In
  • NotIn

The operator types In and NotIn are used to test whether the pid of a system call is found in the provided values list in the CR. Both In and NotIn are set operations, which means if multiple values are specified they are ORd together in case of In and ANDd together in case of NotIn.

For example, in case of In the following YAML snippet matches if the pid of a certain system call is being part of the list of {0, 1}:

- matchPIDs:
  - operator: In
    followForks: true
    isNamespacePID: true
    values:
    - 0
    - 1

The above would be executed in the kernel as

pid == 0 OR pid == 1

In case of NotIn the following YAML snippet matches if the pid of a certain system call is not being part of the list of {0, 1}:

- matchPIDs:
  - operator: NotIn
    followForks: true
    isNamespacePID: true
    values:
    - 0
    - 1

The above would be executed in the kernel as

pid != 0 AND pid != 1

In case of matchBinaries:

  • In

The In operator type is used to test whether a binary name of a system call is found in the provided values list. For example, the following YAML snippet matches if the binary name of a certain system call is being part of the list of {binary0, binary1, binary2}:

- matchBinaries:
  - operator: "In"
    values:
    - "binary0"
    - "binary1"
    - "binary2"

Multiple selectors

When multiple selectors are configured they are logically ORd together.

selectors:
 - matchPIDs:
   - operator: In
     followForks: true
     values:
     - pid1
     - pid2
     - pid3
  matchArgs:
  - index: 0
    operator: "Equal"
    values:
    - 1
  - index: 2
    operator: "lt"
    values:
    -  500
 - matchPIDs:
   - operator: In
     followForks: true
     values:
     - pid1
     - pid2
     - pid3
  matchArgs:
  - index: 0
    operator: "Equal"
    values:
    - 2

The above would be executed in kernel as:

(pid in {pid1, pid2, pid3} AND arg0=1 AND arg2 < 500) OR
(pid in {pid1, pid2, pid3} AND arg0=2)
Limitations

Because BPF must be bounded we have to place limits on how many selectors can exist.

  • Max Selectors 8.
  • Max PID values per selector 4
  • Max MatchArgs per selector 5 (one per index)
  • Max MatchArg Values per MatchArgs 1 (limiting initial implementation can bump to 16 or so)
Last modified April 13, 2023: docs: update style and design (220974d4)